Basic Hydrology & Watershed Plan Implementation

Connecting the Pieces

Region 10 Tribal NPS Workshop Olympia, WA October 4, 2006

<u>Discussion Lead</u>: Bruce Cleland

Office of Wetlands, Oceans & Watersheds -- Watershed Branch 1200 Pennsylvania Avenue NW (4503T) Washington, DC 20460

206-553-2600

Discussion Overview

Points to look for ...

Linkage to Implementation

✓ Learning experience & examples

Review of Key Issues

√ Adaptive management

V Benchmarks

√ Monitoring

🙀 Questions & Feedback

Watershed Plan Development

Problem Solving Framework

ractical approach using key questions ...

√ <u>WHY</u> the concern

√ <u>WHAT</u> reductions are needed

V <u>WHERE</u> are the sources

√ <u>WHO</u> needs to be involved

<u>WHEN</u> will actions occur

WHERE are the Sources Hazard / Delivery I was a second of the sources of the s

	Prioritizing Assessment Efforts								
· ·									
🜟 Focus: Source Areas & Delivery Mechanisms									
XAMPLE	Duration Curve Zone								
Contributing Source Area	High	Moist	Mid-Range	Dry	Low				
Point source				M	н				
Septics & Illicit Connections	M	м-н	н	н	Н				
Riparian areas		Н	н	M					
Stormwater: Impervious Surfaces	н	н	н	M					
Construction Site Runoff	Н	н	M	M					
		н	Н						
C50's	Н	- FI							

Connecting the Pieces								
Contributing Source Area	Duration Curve Zone							
	<u>High</u>	Moist	Mid-Range	Dry	Low			
Point source				M	н			
On-site wastewater systems	> M	м-н	Н	Н	Н			
Riparian areas		Н	Н	M				
Stormwater: Impervious		Н	н	н				
C50's	Н	Н	н					
Stormwater: Upland	Н	Н	M					
Field drainage: Natural condition	Н	M						
Field drainage: Tile system	> н	Н	M-H	L-M				
Bank erosion	Н	M						
ote: Potential relative importance	e of sour	ce area to	o contribute	loads und	der givei			

Utilize Existing Efforts

Strategies

* Pathogen & Nutrient Reduction

- √ Manure management
- √ Pasture management
- √ Nutrient management
- **√** CSO / SSO correction
- √ Home-site fertilizer education
- ✓ On-site system repair / replacement

Utilize Existing Efforts

Strategies

★ Sediment Reduction

- V Cover crops
 - Buffer strips
 - √ Conservation tillage
 - √ Stormwater management
 - √ Non-row crop alternatives
 - √ Construction site runoff

Developing Solutions

Linking to Implementation Efforts

- Focus: Source Areas & Delivery Mechanisms
- * Example: SWMP Elements
 - ✓ Illicit Connections (e.g. detection & elimination)
 - Site Construction (e.g. channel stabilization, bank protection)
 - Post Development (e.g. channel stabilization, bank protection)
 - ✓ Pollution Prevention & Housekeeping

Connecting the Pieces Developing Solutions Potential Actions (i.e. SWMP Elements) Duration Curve Zone Mid-Range Management Practice cteria Source Reduction Remove Illicit Discharges mbined Sewer Overflow Management Septic System Management Replacing Failed Systems lote: Potential relative importance of management practice effectiveness under given hydrologi condition (H: High: M: Medium: L: Low) Connecting the Pieces Developing Solutions Potential Actions (i.e. SWMP Elements) Duration Curve Zone Management Practice ow Impact Development Practices Disconnecting Impervious Areas Bioretention Pervious Pavement <u>lete:</u> Potential relative importance of management practice effectiveness under given hydrologi condition (*H: High: M: Medium: L: Low*)

Connecting the Pieces Developing Solutions Potential Actions (i.e. SWMP Elements) Duration Curve Zone Management Practice Moist Mid-Range High Low Agricultural Management Practices Managing Manure Application Pasture / Grazing Management Managing Barnyards Managing Recreational Sources Designate No Discharge Areas Address Discharges from Boats Note: Potential relative importance of management practice effectiveness under given hydrologic condition (H: High: M: Medium: L: Low)

Problem Solving Framework

Adaptive Management

- ✓ Plan development using "best available data"
- ✓ Phased implementation with measurable milestones
- √ Iterative approach evaluate results & enhance plan, as appropriate
- Focus cumulative reductions in loading

Storm Water Management Opportunities Benchmarks: Connect to Program Objectives Unit Area Flow Duration Curve Extreme & overbank flood protection Channel protection Water quality treatment Water quality treatment Flow Duration Interval (%) Cheened Flow Duration Interval (%)

Storm Water Management Opportunities Benchmarks: Connect to Program Objectives Objective: Measure Effectiveness of SWMP May be a range (recognize variability) Tool for guiding: Adaptive Management

Storm Water Management Getting to Solutions Illicit Connections WQ Concern (TMDL) Bacteria, Nutrients Condition (Benchmark) Dry, Low Flows Solution (BMP) Detection & Elimination

Storm Water Management Opportunities Monitoring & Storm Water Management Plans Characterization Benchmark development Translating TMDLs & plans into actions with results

Problem Solving Framework Public Involvement ✓ Fundamental to successful watershed plan development & implementation ✓ Challenge of explaining technical concepts & information in "plain English" ✓ Enormous effort, time, & resources to achieve meaningful participation ✓ Genuine commitment to listen, consider, & utilize citizen input

Transition to Implementation Making It Work !!! Driving Principles Technically-based (logic path) Meaningful (easily understood) Value-added (connect with implementation efforts designed to solve problem)

Contacts

Office, E-Mail, Phone, Web

- USEPA/OWOW Watershed Branch 1200 Pennsylvania Ave NW (4503T) Washington, DC 98101
 - Cleland.Bruce@epa.gov (206) 553-2600
 - http://www.epa.gov/owow